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outline

• Relativistic vs Non-relativistic shocks

• Shock structure 

• Particle acceleration

• CR back-reaction 

• Opportunities/challenges
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Relativistic 
shocks

are 
easier!!! acceleration is also faster
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Problem setup

Simulation is in the downstream frame.
We verified that the wall plays no adverse effect by comparing with a two-shell collision.

Many groups are working on PIC simultaions:
Silva et al, Hoshino et al, Nishikawa et al, Nordlund et al. 

All groups agree on main points, though run times and simulation sizes differ.
Key is running simulations long enough to see “steady” shocks 

Largest runs go for 10000 ωp-1; sizes up to 2002x2000 skins; 4e10 particles

γ =15 γ =15

c/3 (3D) or c/2(2D)

Use reflecting wall to initialize a shock

c/3(3D) or c/2(2D)

upstream downstream
shock

“Shock” is a jump in density & velocity

c c

c

Problem setup
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what is a shock?
• Jump in density, temperature and average 

velocity.

• NOT EVERY JUMP IS A SHOCK!

vshock< c ~c

~50 skin depths of ions
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what is a shock?
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Relativistic pair shocks
Establishment of a self-propagating shock structure for σ=0 

Magnetized shock is mediated by magnetic reflection, while the 
unmagnetized shock -- by field generation from filamentation instability. 
Transition is near σ=1e-3   (A.S. 2005)

3D density

Magnetic Energy
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Relativistic pair shocks
Establishment of a self-propagating shock structure for σ=0 

3D density

Magnetic Energy

Density

<Magnetic Energy>

<Density>

Upstream Waves

Shock compression

Generated field
Field decay

Upstream tangled filaments (turbulence)Downstream field

min max
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3D unmagnetized pair shock: magnetic energy
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Unmagnetized pair 
shock: 
shock is driven by 
returning particle 
precursor (CR!)
Steady counterstreaming 
leads to self-replicating shock 
structure

Shock structure for σ=0 (AS ’08)

Magnetized shock is mediated by magnetic reflection, while the 
unmagnetized shock -- by field generation from filamentation instability. 
Transition is near σ=1e-4.

x- px momentum 
space

x- py momentum 
space

Long term 2D simulation
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Unmagnetized pair shock: 

downstream spectrum: development of nonthermal tail! 

Magnetized shock is mediated by magnetic reflection, while the 
unmagnetized shock -- by field generation from filamentation instability. 
Transition is near σ=1e-4.

Nonthermal tail deveolps, N(E)~E-2.4. Nonthermal contribution is 1% by 
number, ~10% by energy. Now independently confirmed (Silva et al.)

Early signature of this process is seen in the 3D data as well. 

A.S. 2008, ApJ, 682, L5 also seen by Martins et al 09
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Unmagnetized pair shock: particle trajectories 

Magnetized shock is mediated by magnetic reflection, while the 
unmagnetized shock -- by field generation from filamentation instability. 
Transition is near σ=1e-4.

Nonthermal tail develops, N(E)~E-2.4. Nonthermal contribution is 1% by number, 
~10% by energy. Well fit by low energy Maxwellian + power law with cutoff. 

Same process is seen in the 3D data as well. Easy to have ΔB/B>>1 when B=0!

Injection works self-consistently from the thermal distribution.

Particles that are accelerated the most, graze the shock surface

Magnetic 
filaments

Particle 
energy
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Electromagnetic streaming instability. 
Works by filamentation of plasma
Spatial growth scale -- skin depth, 

time scale -- plasma frequency

σ=0 

Magnetic 
energy

Transition between magnetized and unmagnetized shocks:

Density
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Electromagnetic streaming instability. 
Works by filamentation of plasma
Spatial growth scale -- skin depth, 

time scale -- plasma frequency

σ=10-3 

Transition between magnetized and unmagnetized shocks:

B field
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Electromagnetic streaming instability. 
Works by filamentation of plasma
Spatial growth scale -- skin depth, 

time scale -- plasma frequency

σ=10-1 

Transition between magnetized and unmagnetized shocks:

Acceleration:  σ<10-3 produce power laws, σ>10-3 just thermalize

B field
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Can magnetized pair shocks accelerate particles?

Investigate the dependence of acceleration on the angle between the background field and 
the shock normal (Sironi & AS 09): σ=0.1, γ=15; Find p-law index near -2.3

Observe transition between subluminal and superluminal shocks. 
Shock drift acceleration is important near transition.  

Perpendicular shocks are poor accelerators.

45 0 15 30
βsh/cosθ < 1 -- subluminal
Self-turbulence is not enough to 
exceed superluminal constraint

θ

θupstream < 32◦/γ
In upstream frame need:

for acceleration
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Returning particles and upstream waves
0 degrees,   subluminal                              45 degrees,     superluminal

Upstream oblique waves are caused by returning particles which are scattered by these waves
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Can magnetized e-ion shocks accelerate particles?
Investigate the dependence of acceleration on the angle between the background field and 
the shock normal (Sironi & AS in prep): σ=0.1, γ=15, mass ratio 16.

Superluminal constraint works even for 
electron-ion plasmas (relativistic)

Perpendicular shocks are poor accelerators.

Electron heating -- 10-50% of ion energy;    
up to 25% of flow energy in ion tail

Electrons -- 2-10%

βsh/cosθ < 1 -- subluminal
Self-turbulence is not enough to 
exceed superluminal constraint

θ 45 0 15 30

0 30

15

45
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Electron-ion shocks: growth of upstream waves

Magnetized shock is mediated by magnetic reflection, while the 
unmagnetized shock -- by field generation from filamentation instability. 
Transition is near σ=1e-4.

Growth of upstream waves leads 
to more efficient scattering and 
acceleration of ions. Feedback of 
acceleration on the shock 
structure.

Ions 
45° 0° 

15° 

30° 

Sironi & AS, 
in prep
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CR accelerating shocks can cause a 
current of protons to propagate through 
the upstream. Bell (04, 05) found an MHD 
instability of CRs flying through 
magnetized plasma. 

The interaction is nonresonant at 
wavelength << Larmor radius of CRs. 

We simulated this instability with PIC in 
2D and 3D (Riquelme and A.S. 09)

Saturation is due to plasma motion (VA ~ 
Vd,CR), or CR deflection; for SNR conditions 
expect ~10 field increase.

B field amplification Bell’s nonresonant CR instability

Cosmic 
rays

Cosmic ray current Jcr=encrvsh
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CR accelerating shocks can cause a 
current of protons to propagate through 
the upstream. Bell (04, 05) found an MHD 
instability of CRs flying through 
magnetized plasma. 

The interaction is nonresonant at 
wavelength << Larmor radius of CRs. 

We simulated this instability with PIC in 
2D and 3D (Riquelme and A.S. 09)

Saturation is due to plasma motion (VA ~ 
Vd,CR), or CR deflection; for SNR conditions 
expect ~10 field increase.

B field amplification Bell’s nonresonant CR instability

electrons

CRs

Bo

kmax c=2πJcr/B0
γmax=kmaxVAlfven,0

Need magnetized plasma: ωci>>γmax

Magnetic energy growth
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B field amplification: 3D runs Bell’s nonresonant CR instability

Field amplification of ~10 in SNRs can be due to Bell’s instability 

(Riquelme and A.S. 2009 ApJ)

Wednesday, January 20, 2010



Field growth
we see growth of field energy and scale 
with time near shock, and slower decay 
downstream at 104 skindepths

Accelerated particles 
backreact on the flow

Keshet et al 09
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Opportunities/challenges
Large scale simulations produce collisionless shocks and 
particle acceleration from first principles.
Dependence on field orientation and strength is now more 
understood -- strong constraints on astrophysical scenarios
New observations are driving this field: Fermi, HESS, CRs 
are constraining the shock physics and back-reaction on ISM.

Experiments: if scales of experiment >> c/ωp , RL interesting 
shocks can be produced. 
Simulations of experimental conditions necessary for 
interpretation
Challenge (both experiment and simulations) to have large 
enough scales to probe both the shock formation + 
subsequent back-reaction beyond transients.
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Simulation issues:

Coupling of small and large scales, perhaps PIC + hybrid
More physics: radiation effects
Effects of upstream turbulence
Effects of self-generated turbulence
Stability and robustness at long time evolution
Numerical heating vs physical heating
Better interpretation tools: visualization and test-particle
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